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Abstract
A classical example of failure of Newlander–Nirenberg the-
orem in infinite dimensions, due to LeBrun, is the space
of unparametrized knots in a conformally Riemannian 3-
dimensional manifold. We study the possible compact ana-
lytic sumbanifolds of finite dimension in such manifolds.
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1 Introduction

1.1 Complex structure on the space of knots

Let S1 be a circle, M a smooth manifold, and Maps(S1,M) = {f | f : S1 → M}
the set of smooth maps equipped with Fréchet topology of convergence with
all derivatives. It is a manifold which can be modelled locally on the vector
space Γ(S1, f∗TM) of vector fields defined along the image of f . This Fréchet
manifolds carries a natural action of the group D = Diffeo+(S1) of orientation-
preserving diffeomorphisms of circle by δ(f) = f ◦ δ−1. The quotient is again
a manifold, with tangent space at [f ] isomorphic to Γ(S1, f∗TM)/Γ(S1, TS1),
which is isomorphic to Γ(S1, νf ), where the normal bundle νf is defined as
f∗TM/TS1, due to the Serre–Swan theorem.

Definition 1.1: The quotient Maps(S1,M)/D is called the space of knots
in M and defined Kn(M).

Provided M is endowed with a conformally Riemannian structure q, so are
endowed the normal spaces to knots. In particular, when dimM = 3, a confor-
mal structure on the normal bundle is the same as a complex structure operator,
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hence q gives rise to the complex structure operator on any space Γ(S1, νf ) and
thus an almost complex structure operator on Kn(M).

Theorem 1.2: (LeBrun [LeBrun], Lempert [Lempert]). This almost com-
plex structure has vanishing Nijenhuis tensor. However, it is not induced by
any complex analytic atlas.

Definition 1.3: Let p ∈ M be a point. The locus of knots passing through
p is a complex submanifold of Kn(M) of codimension one, called the polar
divisor and denoted by Πp.

Proof: If f(z) = p for z ∈ S1, then the condition on the tangent subspace
to this locus is {v ∈ Γ(S1, νf ) | v(z) = 0}, which is a complex-linear condition.

Remark 1.4: The space of knots is not merely a complex manifold: it
carries a natural real structure (that is, an anti-holomorphic involution) defined
by f(z) = f(z−1), z ∈ S1, which reverts the orientation of a knot. It is easy to
see that this involution has no fixed points and preserves the polar divisors.

1.2 CR manifolds and LeBrun’s CR twistors

Definition 1.5: Let N be a smooth manifold of real dimension 2n+ 1. An
almost CR structure is a rank n subbundle H1,0 ⊂ TN ⊗ C with property
H1,0 ∩ H1,0 = 0. It is called integrable, or simply CR structure, if one
has

[
H1,0, H1,0

]
⊂ H1,0. The real distribution H ⊂ TN spanned by H1,0 and

H0,1 = H1,0 is called horizontal, it carries a complex structure operator defined
by

√
−1 onH1,0 and−

√
−1 onH0,1. If (N,H ⊂ TN) is a contact manifold, then

a CR structure is said to be supported on H, if H is its horizontal distribution.

A horizontal map (N,H)
f−→ (N,′ H ′) (that is, such that (df)(H) ⊂ H ′) is called

(anti-)CR holomorphic iff its derivative induces a complex (anti)linear map
of horizontal bundles.

Definition 1.6: Let (N,H) be a contact manifold, and H1,0 ⊂ H ⊗ C is
an integrable CR structure supported on it. Since that [H1,0, H1,0] ⊆ H1,0 and
similarly for H0,1, the Frobenius tensor Λ2H → TN/H reduces to a (1,1)-form
H1,0⊗H0,1 → TN/H with coefficients in the quotient by the horizontal bundle.
It is called the Levi form.

Example 1.7: Let (X, I) be an almost complex manifold, and N ⊂ X a
real codimension one submanifold. Let H1,0 = T 1,0 ∩TN . Then it is an almost
CR structure, supported on a corank one subbundle H = TN ∩ I(TN) ⊂ TN .
If the almost complex structure I is integrable, so is H1,0. If N ⊂ X is given as
a zero locus {u = 0}, then H = ker(dcu)|N , and the Levi form as (ddcu)|N .
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Twistor corrsepondence between real four-dimensional manifolds and com-
plex threefolds with certain geometric data, due to Penrose and Atiyah, is now
classical. LeBrun employed CR manifolds to extend this correspondence to real
three-dimensional manifolds. Indeed, if M ⊂ M ′ is a hypersurface in a four-
dimensional manifold, the restriction of the twistor fibration Tw(M ′)|M is a
real hypersurface in a complex threefold, carrying a natural CR structure. Le-
Brun showed that this construction can be furnished without any reference to
an embedding.

Theorem 1.8: Let M be a compact three-dimensional manifold, ST ∗M be
the spherization of its cotangent bundle (that is, T ∗M \0T∗M modulo rescaling),
and D its natural horizontal distribution. Then there exists a natural construc-
tion which associates to any class of conformally Riemannian metric [g] on M
an operator I[g] : D → D which makes ST ∗M into a CR manifold, for which the
fibration ST ∗M → M is a foliation into holomoprhic curves. This CR manifold
is denoted by Tw(M, [g]) and called the LeBrun’s CR twistor space.

In what follows, we shall denote the horizontal distribution on the LeBrun’s
twistor space by the Cyrillic letter D (traditionally called “dobro”), which was
the LeBrun’s choice in the very first paper on the subject, and reserve the
overused letter H for some other occasions.

LeBrun’s original construction was based on the bundle of null cones Q =
{v ∈ T ∗N ⊗ C | g(v, v) = 0} inside the complexified tangent bundle of M ,
restriction of complex-valued symptectic form onto it and taking the Hamilto-
nian reduction. This immediately implies involutivity of the bundle D1,0 and
conformal invariance of this structure. Verbitsky proposed an alternative, more
transparent construction, in which unfortunately the desired properties follow
by nontrivial calculations.

Proposition 1.9: (Verbitsky [Verbitsky]) Let (M, g) be a three-dimensional
Riemannian manifold, andD ⊂ T (ST ∗M) be the standard contact distribution.
Let D = Dv⊕Dh be the splitting of it into vertical and horizontal part, induced
by the Levi-Civita connection associated to g, in particular, Dh

p,τ
∼= τ ⊂ TpM .

Let Ig be the complex structure on D, defined on Dv as the standard complex
structure on the unit sphere, and on Dh as the rotation by π/2 in the positive
direction in the corresponding oriented plane τ ⊂ TpM . Then Ig is the LeBrun’s
CR structure I[g].

Remark 1.10: It is clear though from this description that the twistor space
Tw(M) carries a natural fixed-point-free anti-CR involution: namely, flipping
the orientation of the plane (p, τ) 7→ (p, τ).

In the main part of the present paper, we shall introduce a third definition
of the LeBrun’s CR structure in spirit of Eells–Salamon. Now let us notice that
the LeBrun’s CR space is indeed a twistor space, that is, its CR geometry en-
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codes the conformally Riemannian geometry of the three-dimensional manifold
it emanates from.

Theorem 1.11: (LeBrun, [LeBrun, §4]) Let (N,D) be a 5-dimensional CR
manifold with nondegenerate Levi form and a smooth foliation by CP1s. Then
the space M of its leaves is a real three-dimensional manifold. This manifold M
admits a conformally Riemannian metric such that (N,D) is its LeBrun’s twistor
space Tw(M), iff N carries a CR contact form orthogonal to the foliation, and
an anti-CR involution preserving the foliation and respecting the contact form.

[what follows should be a separate section in the middle of the paper, ded-
icated to our approach to the LeBrun’s CR twistor space via umbilics; the
present section should be a brief exposition of the existing knowledge on Le-
Brun’s twistors]

1.3 Universal knot and its double fibration

Let us fix a point o ∈ S1 once and for all, and let D◦ ⊂ D be the group of
diffeomorphisms fixing o. Of course one has D/D◦ ∼= S1.

Definition 1.12: The space of marked knots, or the universal knot
Kn◦(X) is defined as the quotient Maps(S1,M)/D◦. It carries a structure of a
double fibration: the fibration fgt : Kn◦(X) → Kn(X) given by taking quotient
further by D, thus with fiber D/D◦ ∼= S1, which forgets the marked point, and
another ev : Kn◦(X) → X given by [f ] 7→ f(o) ∈ X, called the evaluation
map.

This double fibration allows a transgression operation T = fgt∗◦ ev∗, which
associates an object on the space of knots Kn(M) to an object on M . For
example, the transgression of a point p ∈ M is the polar divisor Πp ⊂ Kn(M).
If α ∈ Ωk(M) is a differential k-form, then Tα is a differential (k − 1)-form on
Kn(M) obtained by pulling α back to the universal knot and then integrating it
over fibers. In the simplest case of a 1-form α its transgression Tα is a function
given by (Tα)(f) =

∫
S1f

∗α. Another important case is when α is a volume form
on M . Then Tα ∈ Ω2(Kn(M)) is a nowhere degenerate 2-form. If dα = 0, then
dTα = 0 as well, since the transgression operation is defined on the topological
level, and since top degree form is always closed, this means that Tα for a
volume form α is a symplectic form on Kn(M).

Proposition 1.13: Let (M, g) be a Riemannian manifold, and β its Rie-
mannian volume form. Then Tβ ∈ Ω2(Kn(M)) is a Kähler form for the complex
structure on Kn(M) induced by the conformal class of [g].

Proof:
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Definition 1.14: Let Σ ⊂ M be a surface. Consider the locus Π̃Σ = {f ∈
Kn◦(M) : f(o) ∈ Σ, f ′(o) ⊥ Σ} ⊂ Kn◦(M). Its projection ΠΣ = fgt

(
Π̃Σ

)
⊂

Kn(M) is called the transpolar locus.

Proposition 1.15: The projection Π̃Σ → ΠΣ is the normalization of simple
normal crossing singularities. If Σ ⊂ M is umbilic, then ΠΣ is a complex
codimension one subvariety, called the transpolar divisor. Moreover, the
evaluation map ΠΣ → Σ (strictly speaking defined only on the normalization

Π̃Σ) is holomorphic w. r. t. the conformal structure on Σ restricted from M .

Remark 1.16: The polar divisors Πp for p ∈ M a point can be considered
as degenerate cases of transpolar divisors, when the point p is viewed as a
sphere of vanishing radius—hence the name. However, a transpolar divisor is
not generally speaking preserved by the real structure on Kn(M).

Proof: The first assertion is obvious: the preimage of a knot from ΠΣ is
a pair of a knot γ ∈ ΠΣ and a point from γ ∩ Σ where the intersection is
orthogonal. There is a finite number of such points on a knot, and two such
points cannot collide, since otherwise a tangent vector to Σ formed by colliding
points would be perpendicular to Σ at the same time. Generically, there is only
one such point.

The second assertion amounts to an annoying coördinate computation in-
volving local curvatures, which is way below the authors’ skills and dignity.

1.4 CR structure on the universal knot

The evaluation map Kn◦(M) → M gives rise to a contact distribution. Namely,
if f ∈ Kn◦(M) is a marked knot, then one can define the horizontal sub-
space Hf ⊂ Tf Kn◦ as the inverse image Hf = ev∗νf(o) of the normal sub-
space νf(o)f(S

1) ⊂ Tf(o)M . This distribution has real codimension one and is
transversal to the fibers of the projection Kn◦(M) → Kn(M), hence projects
onto the tangent spaces of Kn(M) isomorphically, and inherit the formally in-
tegrable complex structure.

The evaluation map can be refined using the LeBrun’s twistor space.

Definition 1.17: Let M be a conformally Riemannian 3-dimensional man-
ifold, and Tw(M) = ST ∗M be its LeBrun’s CR twistor space. The map
vel : Kn◦(X) → Tw(M) which sends a marked knot f to the oriented plane
νf(o)f(S

1) ⊂ Tf(o)M , is called the velocity map.

The rationale for the name is as follows: in presence of a conformal structure,
the bundles ST ∗M and STM are identified, and the normal plane to a knot at
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its marked point corresponds to the positive direction tangent to the knot at
the marked point.

Definition 1.18: The pullback H ⊂ T Kn◦(M) of the contact distribution
on Tw(M) under the velocity map vel : Kn◦(M) → Tw(M) is called the nat-
ural contact distribution. Since the projection d fgt : H → T Kn(M) is a
fiberwise isomorphism, the pullback of the almost integrable complex structure
I : T Kn(M) → T Kn(M) defines a natural CR structure on Kn◦(M) supported
on H, which we shall refer to as the natural CR structure. The real structure
on Kn(M) extends obviously to an anti-CR involution on Kn◦(M).

Proposition 1.19: The velocity map vel : Kn◦(M) → Tw(M) is horizontal,
CR holomorphic, and intertwines the natural anti-CR involutions.

Proof: The horizontality assertion follows from the definition of the contact
distribution H. To prove CR holomorphicity, pick up a point p ∈ M , τ ⊂ TpM
an oriented plane, and ℓ ⊂ Hp,τ Tw(M) a complex line (w. r. t. the LeBrun’s
CR structure on Tw(M)). By the Umbilic Point lemma (Lemma 2.10), there
exists a surface Σ ⊂ M passing through p and umbilic at p with TpΣ = τ ,
such that Tp,τ (ßΣ) = ℓ ⊂ Tp,τ Tw(M), where ß: Σ → Tw(M) is the Gauss
map. We shrink Σ (to a formal germ of surface if needed) so that it is totally
umbilic. The transpolar divisor ΠΣ is thus a (germ of a) complex analytic
submanifold in Kn(M), and thus its lift Π′

Σ ⊂ Kn◦(M) is a horizontal CR
holomorphic submanifold. By Proposition 1.15, the forgetful projection along
this submanifold is holomrphic w. r. t. the induced conformal structure on
Σ, and thus the restriction of the velocity map to it (it has range ßΣ) is also
holomorphic, since holomorphic are the Gaussian lifts of totally umbilic surfaces
(Proposition 2.8).

Thus the velocity map has complex linear differential whenever restricted
to the preimage of any complex line in H ⊂ T Tw(M), which means that the
velocity map is indeed CR holomorphic. The last assertion is immediate.

In particular, preimages of horizontal CR holomoprhic curves in Tw(M)
under the velocity map project to complex analytic loci in Kn(M). For twisto-
rial lines ST ∗

pM = Twp(M) ⊂ Tw(M), this yields polar divisors Πp, and for
the Gaussian lifts of totally umbilic surfaces—the transpolar divisors. Another
example are preimages of mere points, i. e. fibers of the velocity map:

Definition 1.20: The fibers of the velocity map Kn◦ → Tw(M), projected
to Kn(M), are codimension two complex submanifolds called the penicillar
loci and denoted by τv,p. They parametrize the knots passing through p with
tangent vector v.
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2 LeBrun’s CR structure via umbilics

Let us remind of the following classical construction from analytic mechanics.

Remark 2.1: Let X be a manifold, and ST ∗X
π−→ X the spherization of

its tangent bundle (quotient of T ∗M with zero section removed by the rescaling
action of R>0). Then it carries a natural contact distribution D ⊂ T (ST ∗X),
defined by D(ξ,p) = ker(π∗ξ), ξ ∈ ST ∗

pX a 1-form at p. The Frobenius tensor
Λ2D → T/D defined by u∧v 7→ [u, v] mod D defines a (conformally) symplectic
structure on each horizontal space D, which we shall denote by λ.

Definition 2.2: Let Ψ ⊂ X be a coöriented hypersurface. Then the map
ßΨ : Ψ → ST ∗X, defined by ß(p) = TpΨ ∈ ST ∗

pX, is called the Gauss map.

Proposition 2.3: The images of the Gauss map are horizontal and La-
grangian w.r.t. the Frobenius form.

Proof: The horizontality is immediate. Since ß(Ψ) is a submanifold, the
vector fields on it commute into vector fields on the same submanifold, and since
it is horizontal, they contribute nothing to the Frobenius tensor.

Remark 2.4: If dimX = n+1, then for a hypersurface with prescribed tan-
gent hyperplane there are n(n+1)/2 independent quadratic terms of the Taylor
expansion, and since all such hypersurfaces lift by the Gauss map into hori-
zontal Lagrangian submanifolds with different tangent spaces, any horizontal
Lagrangian subspace is a tangent of the Gauss image of some hypersurface (the
dimension of the Lagrangian Grassmannian in R2n equals exactly n(n+ 1)/2).

The horizontal space Dξ,p fits into the exact triple

0 → TξST
∗
pM → Dξ,p → ker ξ ⊂ TpM → 0,

and the subspace TξST
∗
pM ⊂ Dξ,p is Lagrangian w.r.t. the Frobenius form λ.

Note that if M carries a conformal structure, the left and right term both carry
complex structure operator: one on the left since it is a tangent plane to a round
sphere in a Euclidean 3-space, and one on the right because it is an oriented
plane with a conformal structure.

Proposition 2.5: Let g be a Riemannian metric in our conformal class on
M . There exists a unique complex structure operator on D ⊂ T Tw(M) with
the following property: for any point p ∈ M and any surface Σ ⊂ M passing
throug p such that p ∈ Σ is an umbilic point, the tangent space Tp,TpΣß(Σ) to
the Gauss lift ß(Σ) is a complex line. This almost complex structure does not
depend on a choice of a metric in a fixed conformal class.

Proof: Since the umbilicity is a second-order condition, and a second-order
formal neighborhoods of any points in a Riemannian manifold are isometrically
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isomorphic thanks to the existence of geodesic normal coödrinates, one can think

of a surface in a flat space, say given by the equation z = ax2+2bxy+cy2

2 . The
tangent plane to the point (x, y) of such surface is given by 1-form (ax+by)dx+
(bx+ cy)dy − dz, and hence the Gauss map can be written as

ß(x, y) =

(
x, y,

ax2 + 2bxy + cy2

2
,
ax+ by√

N
,
bx+ cy√

N
,
−1√
N

)
∈ T ∗(R3),

where N stands for (ax + by)2 + (bx + cy)2 + 1. This looks ugly, yet we only
need the first-order terms of the Taylor expansion at (0, 0), so it boils down to

ß(δx, 0) = (δx, 0, 0, aδx, bδx,−1),

ß(0, δy) = (0, δy, 0, bδy, cδy,−1),

where δ2 = 0. Umbilicity of the surface at (0, 0) implies that the eigenvalues

of the matrix A =

(
a b
b c

)
coincide, that is, detA = (tr A)2, and elementary

algebra implies that a = c and b = 0. Thus the tangent vectors to the Gauss
lift are (δx, 0, 0, aδx, 0,−1) and (0, δy, 0, 0, aδy,−1), and such subspaces for any
a are indeed complex lines for a unique complex structure, which coincides with
that described by Verbitsky (Proposition 1.9).

To conclude the proof, one can refer to a classical theorem of Schouten
and Struik stating that the umbilic points are unchanged by the conformal
modification of the metric on the ambient space.

Remark 2.6: One might put this as follows: a choice of a Riemannian
metric determines the Levi-Civita connection, thus the Levi-Civita-horizontal
distribution withinD transversal to the fibers of the twistor projection ST ∗M →
M , and in particular its (1, 0)-part. The Proposition 2.5 means that though this
Levi-Civita-horizontal (1, 0) distribution depends on the choice of the metric,
its span with the vertical (1, 0)-distribution only depends on its conformal class.

Proposition 2.7: The distribution D1,0 constructed above is involutive.

Proof: First, [D1,0, D1,0] ⊆ D⊗C by construction: the Frobenius form has
type (1, 1), thus the commutator of any two (1, 0) fields vanish after dividing by
D. ???

Proposition 2.8: Let M be a three-dimensional conformally Riemannian
manifold, and I be some CR structure on the contact manifold ST ∗M subject
to following conditions:

1. The fibers of the projection ST ∗M → M are complex curves,

2. For any surface Σ ⊂ M , taken with the induced conformal structure, the
Gauss map ß: s 7→ (s, TsΣ) ∈ ST ∗M is holomorphic at s iff s ∈ Σ is an
umbilic point.
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Then I is the LeBrun’s CR structure.

Proof: Such CR structure, whenever exists, is unique: its H1,0-subspase is
spanned by the lifts of second-order germs of umbilic surfaces via the Gauss map
at each point. Thus it suffies to show that the LeBrun’s CR structure satisfies
this condition.

The differential dß maps TsΣ to Ts,TsΣST
∗M , being a section of the dif-

ferential of the projection Hs,TsΣ → Σ. The projection map is complex-linear,
thus the image of the complex-antilinear part ∂ß lies in the vertical subbundle.
A direct calculation shows that it equals to the Willmore integrand, which is
known to admit an expression (κ1−κ2)

2dΣ after trivializing the normal bundle,
where κi are the principal curvatures of Σ ⊂ M .

Proposition 2.9: Let M be a three-dimensional conformally Riemannian
manifold, Tw(M) its LeBrun’s twistor space, and λ ∈ Λ1,1H∗ its Levi form. For
any surface Σ ⊂ M , the pullback ß∗λ of the Levi form along the Gauss map is
the Willmore integrand on Σ.

Proof: The Levi form measures the failure of (1, 0) and (0, 1) vector fields
from H⊗C to commute. As soon as Σ is considered with its conformal structure
restricted from M , such fields commute there, so all the failure comes from the
non-holomorphicity of the Gauss map, and thus, as we have seen it the proof of
Proposition 2.8, agrees with the Willmore integrand.

Let us also state a partial converse to the Proposition 2.8, which would be
important in what follows.

Lemma 2.10: Let M be a 3-dimensional conformally Riemannian manifold,
p ∈ M a point, τ ⊂ TpM an oriented plane, and ℓ ⊂ Hp,τ ⊂ Tp,τ Tw(M) a
complex linear subspace which is not tangent to the twistorial line ST ∗

pM ⊂
Tw(M). Then there exists a surface Σ ⊂ M passing through p with TpΣ = τ ,
and with Tp,τ (ßΣ) = ℓ (by Proposition 2.8, it implies that Σ is necessarily
umbilic at p).

Proof: Take a Riemannian metric on M in the conformal class. Up to
second order, M is formally Euclidean at p (in geodesic normal coördinates).
In the Euclidean space, one can pass a sphere of any radius through a given
point with a given tangent plane at it. This gives the first two terms in the
Taylor expansion of Σ at p, and these are the only terms important to ensure
umbilicity.

Remark 2.11: The complex linear susbpace tangent to ST ∗
pM ⊂ Tw(M)

can also be viewed as a tangent, namely to the sphere of vanishing radius,
which we though do not normally consider as a legitimate “surface”, let alone
“umbilic”.
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Example 2.12: The LeBrun’s CR twistor space of a conformally round 3-
sphere arises naturally as a real hypersurface in the complex projective space
CP3. Namely, consider the quaternionic Hopf fibration

CP3 = P(C4) ∼= PC(H2) → HP1 ∼= S4.

If one embeds S3 as an equator of S4, then its preimage in CP3 is a hypersurface
fibered over M into straight lines, and its induced CR structure is CR isomorpic
to the LeBrun’s twistor space Tw(S3).

More concretely, the Hopf fibration can be written as

(x : y : u : v) 7→ (x+ jy : u+ jv)

for a choice of unit quaternion j anti-commuting with i. S3 ⊂ HP1 is given by

the equation Re
(

x+jy
u+jv

)
= 0, or, equivalently, x′u′+x′′u′′+y′v′+y′′v′′ = 0, where

x = x′ + ix′′ etc. That is, Tw(S3) is a real quardic hypersurface in the complex
projective space CP3. This equation is also equivalent to Re(xu + yv) = 0;
notice that the expression in brackets is not algebraic: if it were equivalent to
Re f = 0 for f a polynomial, the algebraic variety {f = 0} would be an integral
submanifold for the CR distribution on Tw(S3), which is proscribed by the
nondegeneracy of the Levi form.

Taking derivatives, one can conclude that the contact element at point (x : y :
u : v) is given by the equation uδx+vδy+xδu+yδv = 0, and since the real part of
this condition defines the tangent bundle to the real quadric {Re(xu+ yv) = 0},
the Reeb vector field can be given by δx = iu, δy = iv, δu = ix, δv = iy.

3 Compact complex sumbanifolds in the space
of knots

We shall start from a simple observation summing up the discussion in the
introduction.

Proposition 3.1: Let M be a compact conformally Riemannian 3-dimensi-
onal manifold, and let X ⊂ Kn(M) be a compact complex submanifold in
its space of knots (in particular, of finite dimension). Then X is a complex
projective manifold.

Proof: The theorem of LeBrun (Theorem 1.2), together with the finite-
dimensional Newlander–Nirenberg theorem, implies that the complex structure
on X is integrable. Proposition 1.13 implies that X is Kähler. Moreover, the
transgression operation preserves the integral structure on cohomology because
of its topological nature; thus the transgression of the fundamental class of M
restricts to an integral class in H2(X), and existence of an integral Kähler class
implies projectivity by the Kodaira embedding theorem.

– 10 – version 0.01, Aug 22, 2022
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However,

Proposition 3.2: (maximum principle for holomorphic families of knots)
Let C ⊂ Kn(M) be a compact complex curve, and C◦ → C be the restriction of
the universal knot to it. Then the evaluation map ev |C : C◦ → M is surjective.

Proof: Let us examine what rank can the differential dev|C have. Note that
it is always at least one: for any point f ∈ C, the restriction ev|fgt−1(f) is an

immersion since fgt−1(f) = f(S1) is always an immersed knot. In the direction
of the horizontal distribution, dev respects the complex structure, hence it can
be either 0 or 2. In total, the possible rank is either 1 or 3, and equals 3 in
generic point (otherwise the family of knots would be constant). The subset
Y ⊂ C◦ where the rank of dev|C does not drop is an open dense subset.

Both C◦ and M are compact three-dimensional manifolds. The image
ev(C◦) ⊂ M is closed, and it contains the image ev(Y ), which is open since
the evaluation map ev |Y is étale, as a dense subset. If M \ ev(C◦) is nonempty,
then it is open, and the boundary ∂ (ev(C◦)) is two-dimensional. But it can be
only one-dimensional since otherwise the rank of dev|C equals 2 somewhere.

Proposition 3.3: Let M be a three-dimensional Riemannian manifold with
Riemannian volume form β such that

∫
M

β = 1, C ⊂ Kn(M) a compact complex
curve, and C◦ → C the universal knot over it. Then the degree of C with respect
to the Kähler form Tβ equals the degree of the evaluation map ev |C : C◦ → M .
Moreover, if vel : C◦ → Tw(M) is the velocity map, then this degree equals the

intersection number of vel(C◦) with the fiber of the projection Tw(M)
π−→ M .

Proof: By definition of the transgression, one has
∫
C
Tβ =

∫
C◦ev

∗β. The
latter integral equals deg(ev|C)

∫
M

β = deg(ev|C). The evaluation map factor-
izes as vel ◦π, where π is the twistor projection, and the second part of the
Proposition then follows from the fact that π∗[β] ∈ H3(Tw(M)) is the Poincaré
dual of the class of the fiber.

The Proposition 3.2 can be reformulated as follows: if C ⊂ Kn(M) is a
compact complex curve, then through any point p ∈ M passes a knot from C.
It of course applies to surfaces, since they are all projective; moveover, it can
be refined further. To state it, we need two or three more definitions.

Definition 3.4: Let M be a conformally Riemannian three-dimensional
manifold. The symmetric square of the universal knot, defined by Kn◦2(M),
is the fiberwise symmetric square of the usual universal knot Kn◦(M) → Kn(M),
a fibration into Möbius bands over Kn(M) with fiber parametrizing the pairs of
(maybe colliding) points on the corresponding knot.

Definition 3.5: Let M be a conformally Riemannian three-dimensional
manifold. Its Hilbert square Hilb2(M) is the manifold with boundary, ob-

– 11 – version 0.01, Aug 22, 2022



R. Déev, V. Rogov Holomorphic families of knots

tained from its symmetric square Sym2(M) by blowing into diagonal the sphere
bundle parametrizing the tangent directions. The bi-evaluation map

ev2 : Kn◦2(M) → Hilb2(M)

is defined by sending a pair of points to a pair of points, if the points are distinct,
and by sending a pair of points on a knot into a positive tangent direction to
this knot, if the points collided.

Proposition 3.6: Let S ⊂ Kn(M) be a compact complex surface. Then
the restriction of the bi-evaluation map ev2 : S◦2 → Hilb2(M) is surjective.

Proof: Let p ∈ M be a point. By Proposition 3.2, any curve C ⊂ S contains
a knot passing through p. Thus varying C, we see that the intersection of S
with the polar divisor Πp is a curve Cp ∈ S. Now applying the Proposition 3.2
to the curve Cp, we see that any other point (including the ones infinitesimally
close to p—that is, tangent directions in TpM) can be joint with p by a knot
from Cp (and thus from S).

We could proceed further by induction to prove that if X ⊂ Kn(M) is a
compact complex n-fold, than through any n-tuple of points in M one can pass
a knot from X. We shall not do this though, since this statement turns out to
be vacuous:

Proposition 3.7: Let X ⊂ Kn(M) be a compact complex n-fold. Then
n ⩽ 2.

The idea behind the proof is as follows. Similarly to what we did above, we
could consider the n-th symmetric power of the universal knot, and n-th evalua-
tion map from it into “Hilbn(M),” a manifold with corners that parametrizes n-
tuples of points with collisions properly desingularized, and show that it must be
a surjection. Thinking of n-tuples with possible collisions algebro-geometrically
as of length n subschemes, one notices that “subschemes” coming from knots
are “curvilinear” (something analogous to subschemes cut out from an algebraic
curve), whereas “Hilbn(M)” for n ⩾ 3 contains “subschemes” which are not
“curvilinear”. However, making this argument rigourous would involve devel-
oping a scheme-theoretic view on conformally Riemannian threefolds, which is
far beyond the scope of the present paper. Thus we present an Ersatz argument
encapsulating the same sentiment.

Proof: By a similar inductive argument, one shows that for any pair of
points p, q ∈ M the locus of knots from X passing through both p and q is at
least a curve. Taking a limit q → p along some direction v ∈ TpM , one gets a
compact complex curve C ⊂ τv,p ⊂ Kn(M).

Pick up a metric of total volume 1 on M within the prescribed conformal
class, and let β be its volume form. By Proposition 3.3, one has

∫
C
Tβ =
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[vel(C◦)]∩
[
π−1(p)

]
∈ H5(Tw(M)). In our situation, the circle bundle C◦ → C

admits a natural section σ0 : f 7→ (f, p). In presence of metric, one can define
a family of sections σε obtained from σ0 by positive rotation by ε (note that in
general this is not a U(1)-action since the knots from C can have nonconstant
lengths). Thus

∫
C
Tβ can be further rewritten as the linking number of π−1(p)

and vel(σε), two surfaces inside a 5-dimensional manifold Tw(M). However, if
we make a local cut of M by a surface passing through p orthogonally to v, then
for ε small enough the surfaces ev(σε) would lie on one side of this local cut.
Thus the linking number of π−1(p) and vel(σε) must be zero. This is impossible,
since it equals the integral of a Kähler form over a compact curve.

Remark 3.8: The above proof no longer works if one does not assume
the curve to be compact. For example, take a 3-sphere S3 with conformally
round metric, and consider all circles (not just the great ones) passing through
a point p and tangent to a tangent vector v ∈ TpS

3. If one realizes S3 as a
Euclidean space compactified by a point at infinity (let it be p), then these
circles become a pencil of parallel lines, which clearly form a complex curve in
Kn(S3) parametrized by C.

Motivated by the above statement and the previous Remark, we make the
following

Conjecture 3.9: Let M be a compact Riemannian three-dimensional mani-
fold with Riemannian volume form β, p ∈ M a point, v ∈ TpM a tangent vector,
and τv ⊂ Kn(M) the locus of knots passing through p with tangent vector v.
Then the Kähler form (Tβ) |τv admits a Kähler potential: (Tβ)τv = ddcu for
some plurisubharmonic function u ∈ C∞(τv).

4 Case of the round sphere

To illustrate the generalities, we shall consider in greater detail the case already
touched in Example 2.12 and Remark 3.8, the case of families of knots in a
round sphere.

Proposition 4.1: Let S3 be equipped with a round Riemannain metric,
and Q ⊂ Kn(S3) be the family of oriented great circles. Then Q is a complex
submanifold biholomorphic to CP1 × CP1.

Proof: Let us realize the round S3 as the unit sphere in the Euclidean
space R4. Then an oriented great circle γ can be identified with the oriented
2-dimensional plane τγ ⊂ R4 which cuts it out, so Q may be identified with the
Grassmannian of oriented planes Gr(2, 4). A normal vector field along circle γ
pointing to a new circle γ′, considered as a vector field within R4, is orthogonal
to both γ and S3, that is, orthogonal to τγ , and it is easy to see that it is a
restriction of a linear vector field defined along τγ and pointing to τγ′ . Under
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this identification, the complex structure on TγQ is identified with the complex
structure on TτGr(2, 4) = Hom(τ, τ⊥) = τ∗ ⊗ τ⊥ which arises from the natural
identification τ⊥ ∼= C.

The Grassmannian of oriented planes may be now identified with a smooth
quardic surface as follows: for each plane τ , its complexification τ ⊗C contains
exactly two isotropic lines ℓ and ℓ, and choice of either corresponds to the choice
of orientation on τ . This defines a map into the quadric {ℓ ⊂ C4 : (ℓ, ℓ) = 0} ⊂
P(C4). It is again immediately holomorphic: the tangent space to the quadric
is isomorphic to Hom(ℓ, ℓ⊥/ℓ),

Proposition 4.2: Under the identification of Tw(S3) with both the unit
tangent bundle UTS3 and the universal great circle Q◦, the geodesic flow cor-
responds to the U(1)-action on Q◦ → Q by the rotation in positive direction.

Proof:

The late Proposition arouses temptation to conjecture that this must be the
case for any compact complex surface in the space of knots. However, such an
abortive conjecture might be disproved by essentially the same example:

Example 4.3: Let S3 be equipped with the round metric, Q ⊂ Kn(S3) the
family of oriented great circles, and ξ : S3 → S3 a conformal transformation
which is not an isometry. Then ξQ ⊂ Kn(S3) is a compact complex surface
on which the lenght functional associated to the Riemannian metric on S3 is
nonconstant.

Nevertheless, a following variation of this conjecture the authors were unable
neither to prove nor to disprove:

Conjecture 4.4: Let M be a conformally Riemannian 3-dimensional man-
ifold, and S ⊂ Kn(M) a compact complex surface in its space of knots. Then
there exists a Riemannian metric in the chosen conformal class, in which all the
knots from S have the same length.

5 Surfaces with rational polar curves

From the previous section, we learn that possible compact complex subman-
ifolds in a space of knots are severely restricted: its maximal possible dimension
is two. Now we examine the geometry of such possible surfaces, which we shall
call, for the sake of brevity, the surfaces of knots.

Proposition 5.1: Let S ⊂ Kn(M) be a surface of knots, and S◦ → S be the
universal knot over it. Then the velocity map vel : S◦ → Tw(M) is surjective.

Proof: Follows directly from Proposition 3.6.
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Remark 5.2: This statement is in a way more important that the general
Proposition it stems from, since the velocity map is horizontal and CR holo-
morphic (Proposition 1.19). Although both CR manifolds Kn◦(M) and Tw(M)
seem to arise as boundaries of certain manifolds Kn◦2(M) and Hilb2(M), and the
horizontal CR holomorphic map between them is induced by the bi-evaluation
map ev2 : Kn◦2(M) → Hilb2(M), we are not aware of any complex structures
on either of these manifolds which would give rise to the CR structures on their
boundaries being considered, and have no way to assert any holomorphicity of
the bi-evaluation map.

Thus for a surface of knots S ⊂ Kn(M), the velocity map vel : S◦ → Tw(M)
is a surjective horizontal CR holomorphic map between two CR manifolds of
the same dimension, nondegenerate in the direction transversal to the horizon-
tal distribution. It may not be a ramified cover though, since possibility of a
blowdown cannot be ruled out.

Proposition 5.3: Let S be a surface of knots. Then the Chern class c1(S
◦ →

S) of the universal knot (considered as a fibration into circles) in nonzero.

Proof: Why indeed not?

Remark 5.4: An example of a surface S with vanishing Chern class c1(S
◦ →

S) would be a surface of knots contained entirely in a polar divisor. Thus the
Proposition 5.3 may be viewed as a refinement of the argument from the proof
of Proposition 3.7.

Definition 5.5: Let S ⊂ Kn(M) be a surface of knots. Preimages of twisto-
rial lines ST ∗

p (M) ⊂ Tw(M), projected to S, are called the polar curves and
denoted by Cp. It is of course the same as curves cut out by polar divisors
Πp ⊂ Kn(M) on S.

The polar curves play a rôle similar to poles and polars in projective duality,
but now between a three-dimensional manifold M and a surface of knots S: a
point p ∈ M gives rise to a curve Cp ∈ M , and a point s ∈ S defines a real
curve (that is, a knot) in M .

Proposition 5.6: Let S ⊂ Kn(M) be a surface of knots. All of its polar
curves are homologous, and [Cp] ∈ H1,1(S) is the Kähler class.

Proof: Polar curves come by transgression along the evaluation map ev : S◦ →
M from a point, and the Kähler class comes by a transgression of a fundamental
class [M ] ∈ H3(M,Z), which is Poincaré dual to the class of a point.

Proposition 5.7: Let S be a surface of knots. Then h2(S) ⩾ 2.
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Proof: In H2(S), one has the Kähler class and the Chern class c1(S
◦ → S).

The latter is nonzero by Proposition 5.3, and they wedge multiply to zero since∫
S
ω ∧ c1(S

◦ → S) = [Cp].c1(S
◦ → S) = c1(C

◦
p → Cp), and the latter class is

zero since marking the point p defines a section of the circle bundle C◦
p → Cp.

Remark 5.8: In particular, a surface of knots cannot be isomorphic to CP2.

Definition 5.9: Let S ⊂ Kn(M) be a compact complex surface. Its index
is the degree of the velocity map vel : S◦ → Tw(M).

In the final part of this paper, we classify the surfaces of index one. In order
to do this, we need a following lemma.

Lemma 5.10: Let X be a compact projective surface polarized by a rational
curve. Then X is either a projective plane, or a quadric, or a Hirzebruch surface.

Proof:

Theorem 5.11: Let M be a conformally Riemannian 3-dimensional man-
ifold, and S ⊂ Kn(M) a compact complex surface of index one in its space of
knots. Then S is a Hirzebruch surface F2k, and M is a quotient of a 3-shpere
with its ????? metric.

Proof: All the polar curves are rational, which means that the surface
S is swept by rational curves and is itself rational. Thus h2,0(S) = 0, and
h1,1 = h2 > 1.

??????
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